A Practical Synthesis of 2,3,4,6-Tetra-O-acetyl-1-O-(2-propenyl)- β -D-glucopyranoside Using ZnCl₂

Yoko Yuasa[†] and Yoshifumi Yuasa^{*,‡}

School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan, and Technical Engineering Department, Takasago International Corporation, 1-5-1 Nishiyawata, Hiratsuka, Kanagawa 254-0073, Japan

Abstract:

2,3,4,6-Tetra-O-acetyl-1-O-(2-propenyl)- β -D-glucopyranoside (1a), which is a useful raw material in the synthesis of a bioactive agent, has been synthesized in 50% yield by reacting β -D-glucose pentaacetate and 3 mol equiv of an allyl alcohol with 0.9 mol equiv of ZnCl₂ in toluene at 80 °C for 2 h followed by recrystallization from diisopropyl ether. This method is suitable for the large-scale preparation of 1a due to its efficiency, safety, and cost-effectiveness.

Introduction

2,3,4,6-Tetra-O-acetyl-1-O-(2-propenyl)-β-D-glucopyranoside (1a) is known to be a useful raw material in the syntheses of a bioactive agent, an irreversible inhibitor of yeast hexokinase,1 and recently reported, 3-(6-deoxy-6sulfoglucopyranosyl)acylglycerol derivatives as immunosuppressants.² Some syntheses of **1a** have been reported.

For example, Lee has reported the synthesis of 1a from 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide, excess allyl alcohol, and 1.1 equiv of mercuric cyanide in 74.5% yield.³ A previous report used a catalytic amount of silver oxide, instead of mercuric cyanide, with chloroform as the solvent to produce **1a** in 65% yield.⁴

Furthermore, β -D-glucose pentaacetate (2) in dichloromethane or in refluxing benzne was alkylated by the various alcohols in the presence of stannic chloride to give alkyl β -D-glucopyranoside tetraacetates.^{5,6} Upon the reaction with an allyl alcohol in the presence of stannic chloride in dichloromethane, β -D-mannose pentaacetate produced the corresponding ally glycosides as a mixture of α -/ β -anomers.⁷

However, these reported methods are considered unsuitable due to the toxicity of the reagents and economic and

(4) Talley, E. A.; Vale, M. D.; Yanovsky, E. J. Am. Chem. Soc. 1945, 47, 2037.

10.1021/op0300488 CCC: \$27.50 © 2004 American Chemical Society Published on Web 03/26/2004

Table 1.	Results	of	the	allylation	of	2	by	SnCl ₄ ^a

	allyl alcohol ^b mol equiv	solvent			ratio of 1a/1b by HPLC	isolated yield of 1a (%)
1	1.0	CH ₂ Cl ₂	25	2	75/25	32
2	2.0	toluene	35	3	40/60	c

^a 1.0 mol equivalent of SnCl₄ for 2 (50 mmol) was used. ^b Mole equivalent value of allyl alcohol for 2. c 1a was not isolated.

Table 2. Results of the allylation of 2 in various amounts of ZnCl₂^a

	ZnCl ₂ mol equiv	solvent	temp (°C)		ratio of 1a/1b by HPLC	isolated yield of 1a (%)
1	1.0	benzene	80	2	90/10	40
2	0.9	benzene	80	2	92/8	45
3	0.8	benzene	80	2	90/10	41

^a 3.0 mol equiv of allyl alcohol for 2 (50 mmol) was used.

environmental concerns. Large-scale production is needed using an efficient, safe, and cost-effective process. We have studied the allylation of 2, and we now report the practical synthesis of 1a for a raw material for synthesis of 3-(6-deoxy-6-sulfoglucopyranosyl)acylglycerol derivatives as immunosuppressants.²

Results and Discussion

Initially, we attempted the coupling reaction of β -Dglucose pentaacetate 2 and allyl alcohol in dichloromethane with SnCl₄, according to the above-described literature.⁵ The result was not practically acceptable with regard to the selectivity of the α/β -anomeric ratio and the isolated yield (run 1 in Table 1). In the case of changing to toluene as the solvent, the selectivity and yield were not improved (run 2) in Table 1). We next used ZnCl₂ as a Lewis acid, which is classified as borderline acid8 and easier to handle than SnCl₄. The amount of ZnCl₂ in benzene as a solvent has been investigated, and 0.9 mol equiv of ZnCl₂ gave the best result (run 2 in Table 2). The solvent and reaction temperature were fixed in benzene at 80 °C, according to a previous report, ^{5a,6} because this reaction did not proceed at temperatures below 50 °C in toluene. Furthermore, the optimal amount of allyl

^{*} To whom correspondence should be addressed. Telephone: 81-463-21-7516. Fax: 81-463-21-7413. E-mail: yoshifumi_yuasa@takasago.com.

Tokyo University of Pharmacy and Life Science.

[‡] Takasago International Corporation.

⁽¹⁾ Bessell, E. M.; Westwood, J. H. Carbohydr. Res. 1972, 25, 11.

⁽²⁾ Yamazaki, T.; Sugawara, F.; Ohta, K.; Masaki, K.; Nakamura, K.; Sakaguchi, K.; Sato, N. WO 0053190, 2000. Chem. Abst. 133, 208124r, 2000.

⁽³⁾ Lee, R. T.; Lee. Y. C. Carbohydr. Res. 1974, 37, 193.

^{(5) (}a) Hanessian, S.; Banoub, J. Carbohydr. Res. 1977, 59, 261. (b) Hanessian, S.; Banoub, J. In Methods in Carbohydrate Chemistry; Whistler, R. L.,

BeMiller, J. N., Eds.; Academic Press: New York, 1980. (6) Hanessian, S.; Shylux, N. P. Can. J. Chem., 1953, 31, 3543.

⁽⁷⁾ RajanBabu, T. V.; Fukunaga, T.; Reddy, G. S. J. Am. Chem. Soc. 1989, 111, 1759.

⁽⁸⁾ Ho, T.-L. Hard and Soft Acids and Bases Principle in Organic Chemistry; Academic Press: New York, 1977.

Table 3. Results of the allylation of 2 in various mol equiv of the allyl $alcohol^{\alpha}$

	allyl alcohol mol equiv	solvent	temp (°C)	reaction time (h)	ratio of 1a/1b by HPLC	isolated yield of 1a (%)
1	1.1	benzene	80	2	80/20	32
2	1.1	benzene	80	9	68/32	20
3	2.0	benzene	80	2	82/18	40
4	3.0	benzene	80	2	92/8	45
5	3.0	benzene	80	20	59/41	15
6	3.0	toluene	80	2	93/7	47
7	3.0	toluene	80	10	46/54	b
	^a 0.9 mol equiv	of ZnCl ₂ for	2 (100	mmol) was	used. ^b 1a w	as not isolated.

Scheme 1. Allylation of β -D-glucose pentaacetate 2 using ZnCl₂

alcohol was investigated, and thus 3 mol equiv of allyl alcohol gave the best result (run 4 in Table 3). Once again, the solvent was changed to toluene instead of benzene (run 6 in Table 3), because benzene has a higher toxicity than toluene. Thus, β -D-glucose pentaacetate, 3 mol equiv of allyl alcohol, and 0.9 mol equiv of ZnCl₂ in toluene at 80 °C for 2 h produced 2,3,4,6-tetra-O-acetyl-1-O-(2-propenyl)- β -Dglucopyranoside (1a) and 2,3,4,6-tetra-O-acetyl-1-O-(2-propenyl)- α -D-glucopyranoside (1b) in a 93/7 ratio by HPLC. Purification by recrystallization from alcohols was not successful, but recrystallization from diisopropyl ether gave 1a with 99% purity in 47% isolated yield (shown in Experimental Section). The rationalization of this reaction could be explained according to the literature;^{5a,9} thus, in the presence of allyl alcohol and ZnCl₂, 2 gave the corresponding 1,2-trans-glucoside 1a, presumably via the formation of a 1,2-orthoesther intermediate, and subsequent rearrengement (Scheme 1). The extension of reaction times led to increasing proportions of α -anomer 1b due to anomerisation (run 7 in Table 3).

1b

The α -anomer, **1b** could be purified by silica gel column chromatography, and its spectra were obtained (shown in Experimental Section).

In large-scale production, we have produced 7.55 kg of **1a** with 99% purity in 50% yield from 15.0 kg of **2** using the above-described method without difficulty.

Experimental Section

β-D-Glucose pentaacetate was purchased from Tokyo Kasei. All reagents and solvents were obtained from commercial sources and used without further purification. For determining the melting points, a Yanagimoto micro melting apparatus was used, and the values are uncorrected. The boiling points are uncorrected values. NMR was run on a Bruker DRX-500. The ¹H and ¹³C NMR were measured at 500 and 125 MHz, respectively. The NMR spectra were recorded in CDCl₃ with TMS as the internal standard. The chemical shifts were given in δ (ppm). IR: Nicolet Avatar 360 FT-IR. MS: Hitachi M-80A mass spectrometer at 70 eV. HPLC: Hitachi L-6200; column: Cosmosil 5C-18AR-II, 4.6 mm × 250 mm; eluent: CH₃CN/0.2% aqueous H₃-PO₄ (60/40); flow rate: 1.0 mL/min; detector: Hitachi L-4000 (220 nm). Retention times **1a** 9.8 min, **1b** 10.2 min.

Scale-Up Procedure for 2,3,4,6-Tetra-O-acetyl-1-O-(2propenvl)-*B*-D-glucopyranoside (1a). In a 200-L glass vessel, toluene (120 L) was added with stirring, and then ZnCl₂ (5.23 kg, 38.18 mol), β -D-glucose pentaacetate **2** (15.0 kg, 38.43 mol), and the allyl alcohol (6.7 kg, 115.33 mol) were added. The mixture was heated at 80 °C for 2 h and immediately cooled to 5 °C. Then water (30 L) was added. The organic layer was separated and washed with 5% Na₂-CO₃ solution (30 L) and 5% NaCl solution (30 L). After the solvent was removed under reduced pressure, an oily residue (13.8 kg) was obatined. The residue was dissolved in diisopropyl ether (60 L) at 50 °C and cooled to 15 °C. The formed crystalline material was filtered and dried at 40 °C under reduced pressure (35 Torr) to give 2,3,4,6-tetra-Oacetyl-1-O-(2-propenyl)- β -D-glucopyranoside (1a) (7.55 kg, 50%) as colourless crystals. Purity was 99% by HPLC. Mp 85-86 °C (lit.¹ 86 °C, lit.³ 88 °C). $[\alpha]^{23}_{D} = -25.0^{\circ} (c = 1, -25.0^{\circ})$ CHCl₃) (lit.³ $[\alpha]^{25}_{D} = -25.8^{\circ}$ (c = 5, CHCl₃). ¹H NMR 2.01 (3H, s, CH₃CO₂), 2.04 (3H, s, CH₃CO₂), 2.05 (3H, s, CH₃-CO₂), 2.09 (3H, s, CH₃CO₂), 3.63-3.72 (1H, m, OCH₂-CH=), 4.06-4.14 (1H, m, OCH₂CH=), 4.16 (1H, d, J = 2.5 Hz, H-5), 4.26 (1H, dd, J = 12.3, 4.8 Hz, H-6), 4.35 (1H, dd, J = 13.2, 4.8 Hz, H-6'), 4.56 (1H, d, J = 2.5 Hz)H-1), 5.02 (1H, dd, J = 9.6, 8.0 Hz, H-3), 5.10 (1H, dd, J = 9.9, 9.5 Hz, H-4), 5.20-5.23 (2H, m, H-2, CH=CH₂), 5.28 (1H, dd, J = 17.3, 1.7 Hz, CH=CH₂), 5.82-5.86 (1H, m, CH=CH₂); ¹³C NMR 20.56 (CH₃), 20.58 (CH₃), 20.63 (CH₃), 20.70 (CH₃), 61.94 (CH₂), 68.44 (CH), 69.99 (CH₂), 71.28 (CH), 71.77 (CH), 72.85 (CH), 99.55 (CH), 117.62 (CH₂), 133.28 (CH), 169.29 (CO), 169.36 (CO), 170.26 (CO), 170.64 (CO); IR (CHCl₃) 3020, 2972, 2878, 2401, 1751, 1648 cm⁻¹; SI-MS (m/e): 411 [M + Na]⁺, 389 [M + H]⁺, 331, 307, 289, 271, 243, 229, 211.

2,3,4,6-Tetra-*O***-acetyl-1**-*O***-(2-propenyl)**-**α**-**D**-**glucopyranoside** (**1b**). A small amount of the mother liquor of recrystallized **1a** was concentrated in a vacuum and purifi-

⁽⁹⁾ Banoub, J.; Bundle, D. R. Can. J. Chem. 1979, 57, 2085.

cated by column chromatography (silica gel, eluent: ethyl acetate/*n*-hexane = 1:15) to give 2,3,4,6-tetra-*O*-acetyl-1-*O*-(2-propenyl)- α -D-glucopyranoside (**1b**). Purity was 98% by HPLC. Mp 51-54 °C (lit.¹ 55-56 °C). [α]²³_D = +131.8° (c = 1.1, CHCl₃) (lit.¹ [α]³⁰_D = +141° (c = 1, CHCl₃)). ¹H NMR 2.01 (3H, s, CH₃CO₂), 2.03 (3H, s, CH₃CO₂), 2.07 (3H, s, CH₃CO₂), 2.09 (3H, s, CH₃CO₂), 3.99-4.11 (3H, m, H-6, OCH₂CH=), 4.16-4.22 (1H, m, H-5), 4.27 (1H, dd, J = 12.3, 4.5 Hz, H-6'), 4.90 (1H, dd, J = 10.3, 3.7 Hz, H-2), 5.07 (1H, dd, J = 10.1, 9.7 Hz, H-3), 5.11 (1H, d, J = 3.7 Hz, H-1), 5.23 (1H, dd, J = 10.4, 1.4 Hz, CH=CH₂), 5.32 (1H, dd, J = 16.4, 1.6 Hz, CH=CH₂), 5.51 (1H, dd, J = 10, 9.7 Hz, H-4), 5.82–5.92 (1H, m, CH=CH₂); ¹³C NMR 20.51 (CH₃), 20.57 (CH₃), 20.58 (CH₃), 20.61 (CH₃), 61.80 (CH₂), 67.28 (CH), 68.49 (CH), 68.71 (CH₂), 70.08 (CH), 70.66 (CH), 94.77 (CH), 118.05 (CH₂), 133.02 (CH), 169.50 (CO), 169.97 (CO), 170.01 (CO), 170.52 (CO); IR (CHCl₃) 3023, 2970, 2401, 2877, 1741, 1647 cm⁻¹; SI-MS (*m/e*): 411 [M + Na]⁺, 389 [M + H]⁺, 331, 307, 289, 271, 243, 229, 211.

Received for review November 12, 2003. OP0300488